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Abstract: In practice, the critical step in building machine learning models of big data (BD) is
costly in terms of time and the computing resources procedure of parameter tuning with a grid
search. Due to the size, BD are comparable to mesoscopic physical systems. Hence, methods of
statistical physics could be applied to BD. The paper shows that topic modeling demonstrates
self-similar behavior under the condition of a varying number of clusters. Such behavior allows
using a renormalization technique. The combination of a renormalization procedure with the Rényi
entropy approach allows for fast searching of the optimal number of clusters. In this paper, the
renormalization procedure is developed for the Latent Dirichlet Allocation (LDA) model with a
variational Expectation-Maximization algorithm. The experiments were conducted on two document
collections with a known number of clusters in two languages. The paper presents results for
three versions of the renormalization procedure: (1) a renormalization with the random merging of
clusters, (2) a renormalization based on minimal values of Kullback–Leibler divergence and (3) a
renormalization with merging clusters with minimal values of Rényi entropy. The paper shows that
the renormalization procedure allows finding the optimal number of topics 26 times faster than grid
search without significant loss of quality.
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1. Introduction

Machine learning algorithms (ML) are increasingly adopted to solve numerous problems arising
from the abundance of data in a growing number of research fields. However successful they are,
these solutions are too often expensive in terms of time and computing resources. Here, one bottleneck
is the problem of hyperparameter optimization, traditionally approached with the so-called grid
search strategy, which is an exhaustive search for optimal values in a manually defined subspace.
One possible way to overcome this limitation, at least for some models, could be found in ideas from
statistical physics.

Among ML models, topic modeling (TM) has a special place. Due to its power to reduce the
dimensionality of large text data and ease of integrating into numerous types of research design, TM
has become a highly valuable technique for social sciences [1]. However, TM requires to specify the
number of topics manually, which is problematic as it is unknown for most data. Available approaches
to the problem of finding the optimal number of topics are built on the grid search strategy [2,3].
One alternative approach is to look for the minimum of Rényi entropy [4]. Moreover, it is possible to
speed up the entropy approach by incorporating the renormalization procedure, exploiting the fact
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that the mathematical formalism of Rényi entropy is closely related to the fractal approach where the
deformation parameter q plays the scaling role [5].

Basics of Topic Modeling

Topic modeling is based on the assumption that a document collection has a finite set of word
distributions. Each such word distribution could be called a ‘topic’ or a thematical cluster. In such
a model, every word has a varying probability of appearing in each cluster; it is a so-called fuzzy
algorithm of bi-clustering where words and documents are simultaneously assigned to topics (clusters).
Here, the probability of encountering a word w in a given document d is expressed as follows [6]:

p(w|d) = ∑
t∈T

p(w|t)p(t|d) = ∑
t∈T

φwtθtd, (1)

where t is a topic, p(w|t) is the distribution of words by topics and p(t|d) is the distribution of topics by
documents. Building a topic model involves finding a set of one-dimensional conditional distributions
p(w|t) ≡ φ(w, t), which constitute matrix Φ (the distribution of words by topics), and p(t|d) ≡ θ(t, d)
which form matrix Θ (the distribution of documents by topics). Each of these distributions is latent
as the probabilities of words in these distributions are unknown. In this paper, we consider the Blei
model [7], where the distribution of topics by documents is assumed to be Dirichlet distribution with
parameter α.

2. Methods

2.1. Entropic Approach for Determining the Optimal Number of Topics

The entropy approach to TM tuning is based primarily on computing Rényi entropy for each topic
solution while varying the number of topics and hyperparameters [4,8]. For TM, the Rényi entropy is
expressed as follows:

SR
q =

ln(Zq)

q− 1
=

q ln(qP̃) + q−1 ln(ρ̃)
q− 1

(2)

where in q = 1/T, T is the number of clusters or topics, ρ̃ = N
WT is the density-of-states function, W is

the number of unique words in the dataset, N is the number of words with high probability (i.e., with
φwt > 1/W), P̃ = 1

T ∑w,t φwt · 1(φwt−1/W) is the sum of probabilities of all words with high probability,
1(x−y) = 1 if x ≥ y and 1(x−y) = 0 if x < y. Thus, E = −T ln(P̃) is the energy of a topic model, ln(ρ̃)
is the Gibbs–Shannon entropy, Zq = e−qE+S = ρ̃(P̃)q is the partition function of a topic solution.

Rényi entropy has at least two benefits for topic modeling. (1) Rényi entropy allows measuring
the degree of non-equilibrium in a topic model with varying number of topics and hyperparameters.
(2) Rényi entropy captures two divergent processes; on the one hand, the increase of the number of
topics leads to the dropping of the Gibbs–Shannon entropy, and, on the other, it leads to an increase of
internal energy. The difference between these two processes has an area of equilibrium where they
counterbalance each other. In this area, SR

q reaches its minimum. It has been shown that the minimum
Rényi entropy corresponds to the number of topics identified by human coders [8]. Hence, the search
for the SR

q minimum could, at least partly, substitute the manual labor of marking up document
collections, substantially simplifying TM tuning on uncoded datasets.

The fractal-like behavior of TM has been shown in [9], demonstrating the existence of areas where
the logarithm of the density-of-states function ρ̃(ε) (ε = 1

WT ) changes linearly. At the same time,
the transition between these areas corresponds to the regions of minimum Massieu function and,
consequently, to the Rényi entropy minimum. Thus, the problem of finding the optimal number of
topics (clusters) in TM could be reduced to locating the area that separates regions of self-similarity.

From the formal point of view, Rényi entropy of the statistical ensemble describes a multifractal
structure that exhibits a renormalization effect related to the deformation parameter q [5]. Based on this
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property, it is possible to hypothesize that Rényi entropy being a deformed logarithm and following
the logarithm of the density-of-states function can have renormalization properties. It is, thus, possible
to examine the renormalization procedure of a single topical solution with a high enough number
of topics.

2.2. General Formulation of the Renormalization Approach in Topic Modeling

In general, the renormalization procedure is a consequent coarsening of a single topic solution
while varying the number of topics and computing Rényi entropy at each step of the procedure.
The coarsening procedure involves merging of topic couples (columns in Φ matrix) into a single topic
(one column). After merging, the resulting topic is scaled as the sum of all word probabilities (in a
topic) must be equal to 1 regardless of the total number of topics. Because the computation of the Φ
matrix depends on the used algorithm, the mathematical formulation of the renormalization procedure
is algorithm-specific. Moreover, the results of merging depend on what particular topics are merged.

This paper investigates three criteria of merging. (1) Merging of similar topics, where the similarity
is estimated with symmetric Kullback–Leibler (Jensen–Shannon) divergence, and the topic pair is
chosen based on the minimal value computed pairwisely. (2) Merging based on the minimum of Rényi
entropy, where the topics with local minima values are summed together. Here, local Rényi entropy is
computed for a single topic. (3) Merging randomly selected columns.

2.3. Renormalization of Topic Models with Variational Inference

Let us consider the LDA model with a variational E-M algorithm [7]. Let T be a given number,
which is set by the user. This model assumes that distribution over topics (topic proportions or topic
weights) is the Dirichlet distribution with parameter α. The output of this model is a vector α with T
components and a matrix containing a distribution of words by topics: Φ = (φwt)w∈W,t∈T , W is the
number of rows (number of unique words), T is the number of columns (number of topics). Calculation
of matrix Φ is based on the variational expectation-maximization (E-M) algorithm, while for estimation
of vector α, the Newton–Rapson method is used. A key formula of this algorithm is the following [7]:

µwt = φwt exp
(

ψ
(

αt +
L
T

))
, (3)

where L is a document length, w is the current word, ψ is digamma function, µwt is an auxiliary
variable, which is used for updating φwt during the variational E-M algorithm. We use an analog
of Equation (3) for the task of renormalization. Thus, the renormalization algorithm consists of the
following steps:

1. We choose a pair of topics for merging according to one of the three possible criteria described in
Section 2.2. Let us denote the chosen topics by t1 and t2.

2. We merge the chosen topics. The word distribution of a ’new’ topic resulted from merging of t1

and t2 is stored in column φ·t1 of matrix Φ:

φwt1 := φwt1 exp(ψ(αt1)) + φwt2 exp(ψ(αt2)), (4)

where ψ is a digamma function. Then, we normalize the obtained column φ·t1 so that ∑w∈W φwt1 = 1.
We also recalculate αt1 := αt1 + αt2 , which corresponds to the hyper-parameter of the ’new’ topic.
Then, we delete column φ·t2 from matrix Φ and element αt2 from vector α. Let us note that this
step leads to a decrease in the number of topics by one, i.e., we have T− 1 topics at the end of this
step. Further, vector α is normalized so that ∑t αt = 1.

3. We calculate the overall value of the global Rényi entropy. Since a new topic solution (matrix Φ)
is formed in the previous step, we recalculate the global Rényi entropy for this solution. We refer
to entropy calculated according to Equation (2) as global Rényi entropy since it accounts for
distributions of all topics.
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Steps 1–3 are repeated until only two topics remain. Then, based on the results of renormalization, a
curve of the global Rényi entropy as a function of the number of topics is drawn.

In order to determine the quality of the renormalization procedure, one needs to compare the
Rényi entropy curve, which is obtained through the renormalization and Rényi entropy curve, which
is obtained through successive calculations of topic models with a varying number of topics. Below,
we demonstrate and discuss the results of computer experiments on renormalization.

3. Results

3.1. Description of Datasets and Experiments

For experiments two datasets were employed:

• Dataset in Russian (Lenta.ru). This dataset contains news articles in the Russian language where
each news item was manually assigned to one of ten topic classes by the dataset provider [10].
However, as some of these topics could be considered folded or correlated (i.e., topic ’soccer’
is a part of topic ’sports’), this dataset could be represented by 7–10 topics. We considered a
class-balanced subset of this dataset, which consisted of 8624 news texts (containing 23,297
unique words).

• Dataset in English (20 Newsgroups dataset [11]). This well-known dataset contains articles
assigned by users to one of 20 newsgroups. Since some of these topics can be unified, this
document collection can be represented by 14–20 topics [12]. The dataset is composed of 15,404
documents with 50,948 unique words.

For each dataset, we performed topic modeling (LDA with variational E-M algorithm) in the
range of 2–100 topics in the increments of one topic. Then, topic solutions on 100 topics undergone
renormalization. Based on the results of the renormalization, curves of Rényi entropy as a function
of the number of topics were plotted. Finally, the obtained curves were compared to Rényi entropy
curves obtained using successive topic modeling.

3.2. Results for the Dataset in Russian

Figure 1 demonstrates the Rényi entropy curve obtained by successive topic modeling with varying
number of topics (black line) and Rényi entropy curves obtained by renormalization with merging of
randomly chosen topics. Here and further, minima are denoted by circles in the figures. The minimum
of original Rényi entropy (black line) corresponds to 11 topics for the dataset in Russian. The minima of
’renormalized’ Rényi entropy fluctuate in the range of 8–24 topics. However, after averaging over five
runs of renormalization, the minimum corresponds to 12–13 topics, which is very close to the result
obtained by successive calculation of topic models. Even though, on average, renormalized Rényi
entropy has larger values than that without renormalization, the overall behavior is similar.

Figure 1. Rényi entropy curves. Black: successive topic modeling. Other colors: renormalization with
the random merging of topics.
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Figure 2 demonstrates the renormalized Rényi entropy curve where topics for merging are selected
according to minimum local Rényi entropy calculated for separate topics. The renormalized curve
reaches its minimum on ten topics, which is very close to the result obtained without renormalization
and matches the original human markup.

Figure 2. Rényi entropy curves. Black is successive topic modeling; red is renormalization with
minimum local entropy principle of merging.

Figure 3 shows a renormalized Rényi entropy curve, where topics for merging are selected
according to minimum Kullback–Leibler (KL) divergence between each topic pairs. Figure 3 displays
significant distortion of the Rényi entropy curve obtained using renormalization. Thus, we conclude
that renormalization based on minimum KL divergence does not apply to the task of searching for the
optimal number of topics.

Figure 3. Rényi entropy curves. Black: successive topic modeling. Red: renormalization with minimum
KL divergence principle of merging.

3.3. Results for the Dataset in English

Figure 4 demonstrates the renormalized Rényi entropy curves with randomly chosen topics
for merging.

The minimum points of renormalized Rényi entropy for five runs lie in the range of 11–17 topics.
Averaging over five runs of renormalization, we obtain that minimum corresponds to 14 topics.
The minimum of Rényi entropy obtained by successive topic modeling with varying number of topics
(black line) corresponds to 16 topics.
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Figure 4. Rényi entropy curves. Black: successive topic modeling. Other colors: renormalization with
the random merging of topics.

Figure 5 demonstrates the renormalized Rényi entropy curve where topics for merging are
selected according to the minimum local Rényi entropy calculated for separate topics. The minimum
of the renormalized curve corresponds to 17 topics. Thus, a renormalization of topic models based on
merging of topics with minimal values of local entropy leads to the result, which is almost identical to
that obtained with the successive calculation of topics models (i.e., without renormalization).

Figure 5. Rényi entropy curves. Black is successive topic modeling; red is renormalization with
minimum local entropy principle of merging.

Figure 6 shows renormalized Rényi entropy, where the topics for merging are selected according
to minimum KL divergence. This figure demonstrates that such type of renormalization does not
allow us to determine the optimal number of topics since there is no definite minimum of Rényi
entropy. Therefore, we recommend applying renormalization with the random merging of topics or
with minimum local Rényi entropy.
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Figure 6. Rényi entropy curves. Black is successive topic modeling; red is renormalization with
minimum KL divergence principle of merging.

3.4. Computational Speed

Table 1 demonstrates time costs of Rényi entropy calculations for T = [2, 100] according to
different methods. The first column corresponds to successive runs of topic modeling for T = [2, 100]
in the increments of one topic. The second, the third and the fourth columns demonstrate time costs of
renormalization of a single topic solution on 100 topics with random merging of topics, with merging
of topics with minimum local Rényi entropy and with merging of topics with minimum KL divergence,
where calculation of a single topic solution on 100 topics takes 26 min for the dataset in Russian and
40 min for the dataset in English. One can see that renormalization provides a significant gain in time
that is essential when dealing with big data.

Table 1. Computational speed.

Successive TM
Simulations

Renormalization
(Random)

Renormalization
(Minimum
Rényi Entropy)

Renormalization
(Minimum KL
Divergence)

Dataset

Russian dataset 780 min 1 min 1 min 4 min

English dataset 1320 min 3 min 3 min 10 min

4. Discussion

In this work, we propose a renormalization approach to the LDA topic model with variational
inference. Our approach allows us to efficiently determine the location of minimum Rényi entropy
without a computationally intensive grid search technique. We demonstrate that renormalization based
on merging of topics with minimum local Rényi entropy provides the best result in terms of accuracy
and computational speed simultaneously. It was shown that for this type of renormalization, the global
minimum point of Rényi entropy is almost equal (with an accuracy of ±1 topic) to the minimum point
of Rényi entropy calculated according to successive topic modeling. Renormalization with the merging
of random topics also leads to satisfactory results; however, it requires multiple runs and subsequent
averaging over all runs. Let us note that renormalization is applicable to datasets in different languages
and with a different number of topics in the collections. Application of renormalization allows
us to speed up the searching of the optimal number of topics by at least 26 times. The proposed
renormalization approach could be adapted for topic models with a sampling procedure. Furthermore,
our renormalization approach can be adapted for simultaneous estimation of the number of topics and
fast tuning of other hyper-parameters of topic models, including regularization parameters.
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